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In this paper a new technique for calculating shock waves in nonlinear materials 
using finite element methods is described. The basic feature of the technique is the use of 
finite elements with built-in discontinuities. This requires the introduction of additional 
parameters which are taken to be the strength of the shock and the location of the shock 
front in an element. A variational principle for shock wave propagation with jump 
conditions is derived, and this is used together with discontinuous trial functions to 
produce equations of motion and equations for the growth and decay of shocks. The 
method is applied to a number of representative nonlinear problems, and numerical 
results and comparisons are indicated. Computationally the technique appears to offer 
a number of advantages over shock smearing schemes including a quite accurate descrip- 
tion of the structure of the shock front. 

1. INTRODUCTION 

There is an important shortcoming of conventional finite-element Gale&in 
schemes when applied to general nonlinear elastodynamics problems. Unless 
special precautions are taken, these schemes depict discontinuous solutions as 
being quite smooth. In addition, temporal operators used to stabilize these 
conventional schemes often are accompanied by unacceptable degrees of artificial 
viscosity. This is particularly serious in shock wave problems wherein a sharp 
definition of the shock front, its strength, and rate-of-decay are required. On the 
other hand, global theories of nonlinear hyperbolic equations must be developed 
in a distributional setting, and it is from such weak or variational forms of 
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boundary- and initial-value problems that the entire theory of Galerkin approxi- 
mations emerges. It would seem, therefore, that the most effective-if not the most 
natural-way to approximate nonlinear wave phenomena would be to develop 
schemes which employ the pholosphy and attactive features of Galerkin methods 
but which are also capable of modeling sharp discontinuities at various wave 
fronts. It is on this observation that the present investigation is based. 

In this paper we develop a numerical scheme and associated computational 
procedures for the approximation of shock waves in one-dimensional nonlinearly 
elastic bodies using discontinuous finite elements, and we describe a number of 
specific applications of these ideas to representative problems. The basic idea is 
to decompose the domain of the nonlinear initial-value problem into collections 
of shockless domains meeting at surfaces of discontinuity where certain jump 
conditions must be applied. Conventional finite-element methods are used to 
model the behavior in the shockless domains, whereas special finite elements 
are used to model the behavior in a boundary layer of elements surrounding the 
shock front. In a companion paper [l] we have developed a fairly complete 
mathematical theory for such approximations, without applications and without 
examples of specific families of discontinuous shape functions. The present paper 
is aimed at further resolving this theory and at the development and application 
of specific types of approximations. 

Following this introduction, we review certain fundamental relationships in 
the theory of shock waves. In Section 3, we develop special variational forms of 
the equations of motion for the nonlinear elastic solid in the presence of a shock. 
These form the basis for all of our special Galerkin schemes. In Section 4, we 
develop a space of discontinuous finite-element models and, using the variational 
principle of Section 3, construct an associated semidiscrete finite-element/Galerkin 
model for the propagation of shock waves. In Section 5, several approximations 
for the acceleration fields of material particles are introduced using finite differences 
in time. In Sections 6 and 7 fully discrete approximations for shock propagation 
are obtained by implementing the finite-element/Galerkin scheme of Section 4 
with the approximations for the temporal operator of Section 5. In Section 8 we 
discuss the global formulation of the problem and present various special proce- 
dures to be used to handle the reflection of nonlinear waves, etc. In Section 9, 
several numerical examples concerned with the growth and reflection of shock 
waves are presented. 

2. SOME PRELIMINARIES 

In this section we consider some basic relationships which are standard tools 
in the theoretical aspects of the problem of shock propagation. 

We begin by considering one-dimensional motions of a continuous body B. 
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In particular, let IC B denote a set of material particles X in motion relative to a 
fixed coordinate frame X. At any time t, the motion of a particle X E I relative to 
its position at t = 0 is given by a function x, 

x = xw, 0, (2.1) 

and, for simplicity, we choose x(X, 0) = X, The displacement of particle X at 
time t is then 

u(X, t) = x - x = x(X, t) - x (2.2) 

and the velocity and gradient of displacement at X at time t are denoted 

zqx, t) = &f(X, t)/&, u&r, t) = &4(X, t>/ax. (2.3) 

Here the partial derivatives are to be interpreted in a generalized sense, i.e., in 
the sense of distributions. We are interested in describing the motion of B over 
some finite time interval 0 < t < T, although T may be very large. 

From the onset, we must anticipate the possibility that various fields may suffer 
discontinuities of one type or another during the time period [0, T]. To describe 
such surfaces (points) of discontinuity, let 

Q = {Y& (2.4) 

denote a set of N + 1 real-valued functions from [0, T] into R (R is the real line) 
such that for each I E [0, T], Q is a partition of I; i.e., if 0 = inf{l>, a = sup(r) < co, 
thenO,<Y,<Y,<...<Y,,<a,aE[W. 
The quotient set 

I/Q = 6 J&L t E LO, Tl, (2.5) 
i=l 

describes the decomposition of I into a number of open shockless domains 

Ji(O = (Y&t), YAt>>, l<ifN, (2.6) 

and a number of singular surfaces Yi(t) on which jump discontinuities may arise. 
The intrinsic speed of the ith wave is then 

Vi = dY&)/dt, l<i<N-1, (2.7) 

and the jump of any quantity I/J at the surface (point) Yi is denoted 

UAY, = wi+, t) - +cyi-, 0. (2.8) 
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We also define the average of 1+4 at the surface Yi as 

Thus 

We next introduce the following notation. 

0(X, r) = the first Piola-Kirchhoff stress, 
p(X) = the density of B in the reference configuration, 

e(X, t) = the specific internal energy, 
[(X, t) = the specific entropy, 
q(X, t) = the heat flux, 
6(X, t) = the absolute temperature, 
f(X, t) = the body force density. 

(2.9) 

(2.10) 

All of these denote values at particle X at time t, XE IC B, t E [0, ZJ. Then we 
formulate the shock propagation problem in its free boundary form as follows. 
Find the set {u, u, e, q, <, 0} such that 

and 

pii-u,y-f=O,’ 
e’ - uti, - qx = 0, 

1 

on Ji ) i = l,..., N, 
et - 4x + (qex/e) 3 0, 

P~iu4lY, + MY, = 0, 

In addition to (2.1 1)4 , (2.1 1)8 , and (2.1 1)6 , which are the momentum, energy, 
and entropy jump conditions at the free boundary or shock, a kinematic compati- 
bility equation can be shown to hold at the shock. For the one-dimensional domain 
the kinematical compatibility condition [2] takes the form at Y, : 

IMIY, = - ~ibX71Y, * (2.12) 

From the momentum jump condition (2.1 1)4 and the kinematical compatibility 
condition (2.12) we can develop a well-known formula specifying the intrinsic 
velocity of a shock wave [3]: 

vi2 = u4lY~/Pu~XDY~ , i = l,..., N - 1. (2.13) 
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3. VARIATIONAL EQUATIONS FOR SHOCK WAVES 

In this section we shall record for future reference the basic balance laws of 
mechanics in a weak or variational form, and show how these can be used to 
develop a weak conservation form of the equations of motion (i.e., a weak form 
of the principle of balance of linear momentum) complete with the appropriate 
jump conditions. 

We may write the following balance laws governing thermomechanical behavior 
of B. 

(i) Balance of linear momentum: 

(ii) Conservation of energy: 

(iii) The Clausius-Duhem inequality: 

(3.2) 

(3.3) 

In these laws we use the notation 

{H*, ONxxa” = 9<& 0 - VW, 0. 

LEMMA 3.1. The identities 

(3.4) 

(3.5) 

holdfor any function $I whose derivative tix is integrable on uf, Ji ; moreover, 

wn*, = ailIq!Yi + &UUBY, (3.6) 

and 

I[tiyy, = 2tii[zqY‘ . 

Proof. These equalities follow immediately from the definitions. 1 

(3.7) 

581/19/2-s 
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When field variables in (3.1) and (3.2) are sufficiently smooth in the shockless 
subdomains, the following local energy laws hold. 

e&r, t) - u(X, t) 2x(X, t) - q&Y, t) = 0, VXE 6 Ji , ‘v’r E [0, co); (3.8) 
i=l 

~il141Yi + dmY, + uqnri = 0, VYi E (2. (3.9) 

We need not assume that such strong conditions hold. We shall say that energy 
is conserved in a locally integrable sense whenever 

s (G,fx-q4x)dX=O, VJiCI; (3.10) 
J, 

~&lY, + 4U4l~~ + UqilYi = 0, VYi E Q. (3.11) 

In (3. lo), the derivatives ux and qx are to be interpreted in the sense of distributions. 

THEOREM 3.1. Let energy be conserved in the focally integrable sense of (3.10) 
and (3.11). Then linear momentum is balanced in a weak sense if and only if 

g s,< (pii - 

N-l 

ox - pfb dX + 1 {~K@%Y~ + E41ri) G = 0 (3.12) 
i=l 

for every velocity field u satisfying the kinematical constraints on the motion of the 
body B. 

Proof. The principle of conservation of energy (3.2) can, with the aid of 
Lemma 3.1, be rewritten in the form 

= fJ(&-(4 + Yr)dX- f (~iU4Y, + Guunyi + myi). 
f=l 

Introducing (3.10) and (3.1 l), we have 

Recognizing that ti can be varied independently of ii and the other variables, we 
replace it by an arbitrary kinematically admissible velocity field v to obtain (3.12). 1 

We shall call (3.12) a weak conservation form of the balance of linear momentum 
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including jump terms associated with the shock problem. An alternate version 
of this weak conservation form is presented in the following corollary. 

COROLLARY 3.1. Let the conditions of Theorem 3.1 hold. Then, for every 
kinematically admissible velocity field v, 

g1 JJi [(Pii - Pm + 

N-l 

uvx] dX + 1 (pVi@l]yi fii - &[v]yJ = {u(., t) v(.)>[;Z; . 
i=l (3.13) 

Proof. This alternate form is obtained from (3.12) by integrating the term 
uXv by parts and using (3.5) and (3.6) of Lemma 3.1. 1 

We have developed the weak conservation forms (3.12) and (3.13) strictly from 
physical arguments. However, we prefer to introduce an alternate but equivalent 
formulation here. Let P(Z) be the space of functions which have u E L,(Z) and 
uX E L,(Z), where L,(Z) is the space of square integrable functions. P(Z) is provided 
with the norm 

We denote by Z&l(Z) the space of functions in HI(Z) which satisfy homogeneous 
boundary conditions. That is, Hoi(Z) = ( v: v E P(Z), v(O) = v(a) = O}. In addition 
we let S = (v: v E: J$i, ZP(Ji), v E L,(Z)} and 2 = {v: v E X, v(0) = v(a) = O}. 
Then a variational formulation for shock propagation is defined as follows. Find 
u E Z&l(Z) such that 

= {cd’, t) tf.>>l”,==:, tJVESfP. (3.14) 

It can be shown that if f E L,(J,), i = l,..., N - 1, then the formulation (3.14) 
is equivalent to solving (2.11), the problem in its free boundary form. That is, 
(3.14) is the variational formulation of the free boundary problem of shock 
propagation. 

4. DISCONTINUOUS FINITE-ELEMENT MODELS 

Conventionally, finite-element approximations of a function 24(X, t) are con- 
structed by partitioning the domain Z into a finite number E of connected sub- 
domains over which the function is interpolated via simple polynomials. By 



186 WELLFORD AND ODEN 

connecting the subdomains I, togetheer and matching values of the local inter- 
polants and possibly certain derivatives, at the points of intersection of the elements 
(i.e., the nodal points), a system of global “shape” or interpolation functions 
GAWE~ are generated which, for each t E [0, T], form the basis of a finite- 
dimensional space of functions. In such a construction, the approximation of the 
displacement field u is of the form 

and the velocity is 

0(X, t) = 5 A@(t) &&Y). 
c-1 

(4.2) 

The construction of approximate schemes for shock problems using represen- 
tations such as (4.1) and (4.2) leads to an immediate paradox: U(X, t) can be made 
continuous in X by an appropriate choice of the global basis functions 4&Y), but 
these same functions depict the behavior of the velocity 0(X, t), which is known 
to have discontinuities at the shock front. Thus, without some deliberate modi- 
fications of the conventional finite-element/Galerkin method, we will obtain 
schemes of the “shock-smearing” type, which depict a continuous but rapidly 
changing variation of velocity and displacement gradient over a shock front. 

Instead of following this conventional approach, we shall construct a Gale&in 
scheme which contains an explicit definition of the wave front. We begin by letting 
P denote a partition of the particles I defined by the G nodal points 

0 = X0 < Xl ( ** * < xc-2 ( XC-1 = a. 

The subdomains 

are the finite elements I = u,“=;’ 4, and we denote 

and 

hk = dia 4 = J?’ - Xk-l 

The real number h serves as a mesh parameter for finite-element approximations. 
Let P&) denote the space of polynomials of degree <k defined on the interval 
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I, of I. Then a general class of discontinuous finite-element approximations can be 
defined as elements of the space 

S;sk(I, P, Q) = (V(X): V(X) E L,(I) n Cm(Jj) n gk(Qi,); 

1 <j<N;l <i<G-l;Q,j=linJ,}. 

Here m and k are positive integers, Jj are the shockless subdomains defined by the 
partition Q, Ii are the finite elements corresponding to partition P, and gk(Qi,) 
denotes the space of polynomials of degree <k on each shockless portion of element 
Ii . The space &‘:*“(I, P, Q) is appropriate for approximating velocity fields, but 
we must ensure that the displacement field itself remain continuous. Thus, the 
discontinuous finite-element approximation of shock waves is a function U in 
2:1”(1, P, Q) n C!“(I), where C”(Z) is the space of functions continuous on I. 

When no discontinuities in the velocities or displacement gradients exist, 
2’r3k(l, P, Q) reduces to the usual space of conforming finite-element interpolants. 
When discontinuities are present, the character of the discontinuity is delined within 
each element by a number of parameters. So as to simplify the problem of choosing 
and determining these parameters, we will limit ourselves to local interpolants 
with the following properties. 

(i) The finite-element basis functions (43 = span 2’rpk(l, P, Q) n Co(I) will 
have compact support in I. Indeed, for any 4,(X) there will exist two elements 
1, , 1a+1 such that #a(X) = 0 for X 4 1, u I,+1 , Presumably, this requirement will 
have a beneficial effect, at least as far as the stability of the scheme is concerned. 

(ii) The discontinuous basis functions vanish at the nodes of the element; 
on the other hand, their values at any point in an element are uniquely determined 
by the values of the discontinuous interpolant and possibly its derivatives on each 
side of the shock. 

The following elements represent typical examples of discontinuous approxi- 
mations. 

(i) Linear elements. The simplest representation of a continuous function 
with a simple discontinuity in its first derivative is the piecewise linear local finite 
element representation shown in Fig. la. There the wave front is located at a 
position Yin the element. 

The piecewise linear local approximation is characterized by four parameters: 

(4.3) 

X E 1, C I. These parameters are determined in terms of the values U, = U(0) 
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u3 

:_I__ 

U2 

“L 

X 

FIG. 1. Examples of piecewise linear and pie@wise quadratic approximations+ 

and U, = U(h) at each end of the element and from the fact that U is continuous 
at Y but dU~dX suffers a prescribedjump S: 

u, = a, 

afbY= CfdY, 

uz = c + dh, 

s = [U& = b - d. 

(4.4) 

Solving these equations and substituting the results into I4.3) gives 

wx) - i Qw> + %w + SYKV, 
a=1 

(44.5) 
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wherein the h(X) are the usual Lagrange finite-element interpolation functions 

VW> = 1 - GJm, $w) = X/h (4.6) 

and /3(X) and #J(X) are new discontinuous shape functions, 

B(X) = 1; x d r, x>y; d(X) = Iy-y~,a x Gx:, y. (4.7) 

For convenience, we shall refer to this class of functions as the DE 1 (discontinuous 
functions of degree 1). They are illustrated in Fig. 2. 

Y I L -x 
u Y h 

FIG. 2. Discontinuous linear trial functions. 

Notice that these functions satisfy the kinematical compatibility conditions 
(2.12). Let 

uuxn, = s 

and if we regard S and Y as functions of time t, 
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Thus 

as required. 
(ii) Quadratic approximations. A similar process can be used to construct 

piecewise quadratic approximations of the type in Fig. 1 b. Here we use 

UC (a+bX+cX2, x<r; 
Id + eX + fX*, x > Y. (4.9) 

This time, we use two adjacent elements of equal length (for simplicity). Then 
evaluating (4.9) at X = 0, h, and 2h and denoting U(O), U(h), and U(2h) by U, , 
U, , U, , respectively, gives 

a = U,, 

d f eh f fh2 = U, , (4.10) 
d + 2eh + 4fh2 = U, . 

Since U is continuous at Y, 

a+bY+cY*=d+eY+fY*. (4.11) 

Again let S be a parameter identified with the shock strength (4.4) and A be a 
parameter defined by 

A = uux*nv * (4.12) 

Thus, the definition of S and (4.10)-(4.12) are sufficient to uniquely determine the 
parameters in (4.9). We finally get 

u(X) = i U&(X> + J-W3 + Q@(x) + 4(X), (4.13) 
C-1 

where &(X) are the usual continuous quadratic functions and the remaining terms 
are discontinuous quadratic interpolants: 

&(X) = 1 - (3X/2h) + (Xa/2hz), 

#z(x> = Wlh) - GW3, 

+403 = -(-VW + (-Wh2), 

-(3X/2h) + (X2/2h2), 
@(x) = 11 - (3X/2h) + (X2/2hs), 

x < K 
x > Y, 

(4.14) 
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We shall refer to these functions as the DIS 2 family. They are illustrated in 
Fig. 3. 

The generalized coordinates R and Q in (4.13) are defined as 

R=S-AY, 

A = SY - &AY2. 
(4.15) 

It remains to be proved that this choice of interpolants satisfies the proper 
kinematical compatibility conditions at the shock front. Observe that 

IIU,llu=(s-AY)(ys,n,+A(Ir)xn,=S-AY+AY== 

FIG. 3. Discontinuous quadratic trial functions with discontinuity on left side of internal node. 
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and 

as required. This means that the jirst-order kinematical compatibility conditions 
are satisfied. 

We use the space sjlzl”(Z, P, Q) C # to define a Galerkin approximation 
consistent with (3.14). This approximation is the semidiscretejinite-element/Galerkin 
method for shock propagation and is defined as follows. Find U E #y’“(Z, P, Q) n 
Co(Z) such that 

5. MODELS OF THE PARTICLE ACCELERATION FIELD 

In this section we begin a discussion of the implementation of the semidiscrete 
iinite-element/Galerkin method (4.16) using the discontinuous trial functions intro- 
duced in Section 4. We emphasize here the linear trial functions (the DIS 1 set). 
In particular, we consider here models of the acceleration field. 

For convenience in notation we define a new trial function x = p + Y$. Then 
the displacement approximation corresponding to (4.5) is 

We differentiate (5.1) twice with respect to time and evaluate the resulting 
expression at time point t = n At to obtain the acceleration at this time point. 

An approximation can be obtained for fin(X) by introducing various difference 
approximations for the first and second temporal derivatives on the right-hand 
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side of (5.2). We call this thejirst inertial approximation, and it is defined as follows. 

O”(X) = i ( uZ+l- yf + u,“-’ ) #a(x) + ( sn+1 - 2s: + P-1 ) x”(x) 
a=1 

+ 2 (s” ,,““-’ )( yn ,,‘“-’ ) p(J-) 

+ S” ( 
Yn+l - ‘dlz” + P-l ) p@). 

(5.3) 

A simpler expression can be obtained in cases when the third and fourth terms on 
the right-hand side in (5.2) can be neglected (by physical arguments) compared to 
the first two terms on the right-hand side. We call this the second inertial approxi- 
mation. It is defined as follows. 

P(X) = fl (,+l - 2;an + U2-l) #&q + (Sn+l - 2’: -t Sn-1) x”(jy). (5.4) 

A third alternative acceleration term can be obtained by approximating u(X) 
directly using central differences. This we call the third intertial approximation. 
It is defined by the expression 

uyx> = un+1 - 2U” + p-1 
At2 

+ 
S”+1p+yX) - 2S7y(X) + P-ly-yx) 

At2 (5.5) 

Several approximation schemes can be developed from these alternative inertial 
formulations. We will discuss these alternate approximation schemes in the 
following sections. 

6. THE EXPLICIT WAVE POSITION METHOD 

Initially we consider a model which uses the first inertial approximation. We 
essentially use the formulation presented in Section 4 (in particular, Eq. (4.16)), 
except that we apply the equations on the element level. We consider a one- 
dimensional finite element 1, which is pertitioned into two disjoint shockless 
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domains Je, and Je, as shown in Fig. 4. We introduce (5.2) into (4.16) and select W 
from the set (I/J,, s,!+ , p, 41. The following system of equations is obtained. 

ZZ -2C,n S” is”-’ )( Yn - y-1 
( At 1 + P ~zekJ(yn) + fs + SC, (6.1) 

il 0,” ( ‘:+l 
- 2u la -f- u,“-’ 

Ar”” ) + ~~ ( Sn+l - g: + Sn-’ ) 

t p _ g-1 
= -2Fn ( At 

>( 

yn _ yn-1 

At ) + pK2S”/P + c7qjlqyn + R”, (6.2) 

jl Han ( “+l 

- 2A7zn + K-l ) + en ( sn+1 - 2$ + P-1 ) 

+ T”S” (?+I - y; + Yn-1 ) + i J 

u “+?x dx 
i=l J” 

‘1 

s" -p-1 

-2T”( At I( 
yn- yn-1 

= 
At ) + pVn*P@ + PU$nByn + Zn, (6.3) 

FIG. 4. One-dimensional finite element with a singular surface 9. 



DISCONTINUOUS ELEMENTS FOR SHOCKS 195 

where 

8.c = i j x”(X) h&f) dx, 
i=l .I:. I 

En = i j x”(X) B”(X) dX, 
i=l J" et 

Fn = 5 j #P(X) B”(X) dx, 
i=l J,". 

Ha" = ; j h&O P(X) dx, 
i=l Jc". 1 

Qn = i 1 x”(X) +‘V> dx, 
i=l .Jz, 

‘2 = r: j d”(X) h(X) dx; 
i=l .I" 'i 

R”= i j f%“dX; 
id Jr. 

1 

Z"= i j f$"dX; 
id Jz. 

I 

T” = i j F(X) b”(X) dX. 
i=l Jz. 

We normally set 

v, = (Y” - Y”-y/At. (6.4) 

This scheme is started with a forward difference approximation at time point t = 0. 
The scheme (6.1-6.4) will be characterized as an explicit shock position method. 

The position of the shock is a dependent variable. Essentially we integrate the 
second time derivative of the shock position Y twice to obtain the change in position 
of the shock. Presumably this formulation should allow for more accurate deter- 
mination of the shock position and should more consistently bring the shock 
position into the formulation since it appears as a dependent variable. 
Unfortunately, this scheme appears to be unstable in sample calculations, and we 
suspect that a more judicious choice of the trial functions and the approximation 
for the temporal operator is necessary to produce a stable scheme. Nevertheless, 
the general method behind this approximation seems to be the most natural, and 
we hope that future computations can improve its performance. 
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7. THE IMPLICIT SHOCK POSITION METHOD 

We can obtain another shock fitting method by using the second approximation 
(Eq. (5.4)). Introducing (5.4) into (4.16) and selecting W from {& , QJ& , /3}, we get 

An additional equation is required to define Y”. We set 

where 
(Y n+1 - ryjot = v, ) (7.3) 

v, = ([u”],,/pS”)l? (7.4) 

This expression for the shock speed is obtained by evaluating (2.13) at time point 
t = n At. We call (7. I)-(7.4) an implicit shock position scheme. 

In the implicit shock position method the velocity of the shock is defined by 
a relationship (7.4) valid only at the wave front and only involves the data at time 
point t = n At. In the explicit shock position method the velocity of the shock 
is defined by integrating the acceleration of the shock. The acceleration of the 
shock is defined in turn by global balance laws and is determined from the solution 
at time point t = n At and time point t = (IZ - 1) At. Thus there is a significant 
difference between the two approximations. As mentioned in Section 6 the explicit 
shock position method seems to be unstable for the specific choice of trial functions 
and integration algorithm used there. However, the implicit shock fitting method 
is stable for reasonable choices of the discretization parameters. Thus it has been 
our main tool in numerical calculations. 

An assumption in the implicit shock fitting method is that the last two terms 
on the right-hand side in (5.2) are small compared to the first two. In cases in 
which this assumption cannot be justified we can still construct an implicit shock 
fitting method using the third inertial approximation, Introducing (5.5) into (4.16) 
and selecting W from {h , & , p}, we get 
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i D,” ( ‘;ln+’ 
-2U”f u,“-’ 

LX=1 
& ) + & KYP+~ - & E’S” 

(Yn+l - Y”)/dl = v, , 

v, = (uu”nm/pSn)1’2, 

where 

K” = 2 1 x”+l(X) B”(X) dX, 
i=l JZ. I 

L” = i [ x”-‘(X)/P(X) dX. 
i=l ” .I:. 
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(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

Implementation of this method is only slightly more complicated than the imple- 
mentation of the implicit shock position method and both use the same initial 
conditions and starting procedure. 

8. THE GLOBAL FORMULATION FOR WAVE AND SHOCK PROPAGATION 

In Section 7 equations of motion valid for finite elements containing shock 
waves were developed. In the global model for shock propagation we use this 
element as a special element which effectively forms a boundary layer around 
the shock and connects shockless regions of ordinary finite elements. In Fig. 5 
we show a typical example of a one-dimensional bar containing a single shock 
wave. The bar is divided into 16 finite elements whose nodes correspond to fixed 
material coordinates; i.e., we use a Lagrangian coordinate system for the elements. 
The shock wave forms a moving surface in an element designated as the special 
element. All other elements in the model are standard. When the shock surface 
crosses interelement boundaries the special element also moves and the previous 
special element reverts to a standard finite element. When the wave passes an 
external node of an element during a specific time step, there is, of course, a discon- 
tinuity in the velocity of the node at some point during the time step. It is essential 
to represent this phenomenon accurately, and we use a special integration procedure 
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Element 

(a) t = a 

lb) t = b 

FIG. 5. Finite element model with special element as a boundary layer at the singular surface. 

when this happens. Suppose the node lies at a point Z relative to the origin of the 
global coordinate system. Then let 

y = (Yn+l - Z)/(Y”” - Y”), 03-V 

At’ = y At, W) 

At” = (1 - y) At. (g-3) 
Then the displacement as the wave reaches the external node is 

u” zzz U” 
(At” + At) At” At”(At + At”) U” 

At - P-1 x + 2 (g-4) 

and an approximation for the displacement of the external node at the end of the 
time step is 

wn+l = vn - v,sn+l At’. (8.5) 

In the next time step we must again use a special procedure to compute the 
displacement of this node. We use 
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In the global formulation we must introduce a special procedure to handle the 
reflection of nonlinear waves. It is necessary to determine the displacement gradient 
and the intrinsic velocity of the wave after reflection. In the shock fitting method 
we require that the momentum jump condition (2.1 l)a and the kinematical 
compatibility condition (2.12) be satisfied. Noting that after reflection the particle 
velocity at the wall must be zero, these conditions imply that 

du- du+ 
-p~V*+pdXV*-O+t-u-=O, 

du- du+ 
vdx-“dx+“-=o. 

(8.7) 

dU-/dX, u-, and ti- are known properties of the incoming wave, and du+/dX and 
V are the unknowns of the problem. 

Equation (8.7) can be solved by the Newton-Raphson 
x = {V, du+/dX}. Then let 

F= 
-p $ Xl* + pX2X12 - a+ + a-, 

du- 

Then as an iterative procedure we require that 

Xn+l = Xn - (Jn)-1 F”, 

where J is the Jacobian matrix defined by 

J = [S’,/h,]. 

method. Let 

w9 

(8.9) 

(8.10) 

If we consider a Mooney material [4] in which the first Piola-Kirchhoff stress (T 
is defined by 

c = qc,x + C*)[l - O/h3)1, 

where X = 1 + ux, the following explicit expressions for 
developed: 

the entries in J can be 

Jll = -2p(du-/dX) x1 + 2px2xl , 

42 = Xl2 - 2G - (1 y;2)3 - (1 y$# , 

J21 = (du-/dX) - x2, 

Jz* = -x1. 

(8.11) 

(8.12) 

581/19/z-6 
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We have obtained very good results by using the reflected wave for a linear material 
as an initial guess to start the iteration. Then we set 

(8.13) 

where Vis the intrinsic velocity of the wave prior to reflection and S is the shock 
strength. Convergence occurs in around seven steps of the procedure (8.9). As a 
final step in defining the reflected wave, we set 

s = (du-/AX) - x2 (8.14) 

and proceed with the calculations. 

9. A LINEAR TEST PROBLEM 

In order to demonstrate the ideas of this paper in calculation of a problem for 
which an exact solution is known, we consider here the case of linear wave propa- 
gation in which a jump in stress is prescribed at the wave front by applying a step 
load to a one-dimensional linear elastic bar. The physical parameters of the problem 
are shown in Fig. 6. In Fig. 7, we compare the stress calculated by the shock fitting 
method with linear trial functions with the profiles based on a central difference 
approximation and a parabolic regularization method (see [SJ). In Fig. 8, the stress 
wave computed by our discontinuous Galerkin method is shown at several time 

3.972 - 
FLLbf.) 

FIG. 6. Physical model for propagation of a linear wave. Physical parameters: density = 
1.0 x IO-’ Ibf-sec2/in4, area = 0.0314 ins, modulus of elasticity = 63.25 lbf/in*, length = 0.64 in. 
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stress 
(P.S.1.) 

stress 
(P.S.1) 

FIG. 7. 

.1 .2 .3 .4 .5 .6 .7 
(C) 

Distance frail the Fee w OPthe Bar (In.) 

Linear wave propagation calculation by several methods. 

points during the propagation of the wave both before and after reflection. The 
shock fitting solution is exact for this problem and the marked improvement 
provided by the use of the method is clear. 

We note that for this problem the phenomenon of “infinite wave speed” of 
Gale&in models did not occur. That is, the stress in front 
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(P.S.I.) 

loo- 

CI 

FIG. 8. Linear wave propagation by the shock fitting method. 

10. THE GROWTH OF SHOCK WAVES 

In order to demonstrate the use of the shock fitting scheme, we consider the 
growth of a compression shock wave in a one-dimensional elastic bar of Mooney 
material. The constitutive equation for the Mooney material is given in (8.11). 
The physical parameters of the problem as well as the forcing function are shown 
in Fig. 9. 
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1 

.5 1. 1.5 
I I I 1 

2. 2.5 3. 3.5 4. 4.5 5. 
t(Sec.xlo4) 

FIG. 9. Physical and model parameters for calculation of compression shock wave in a one- 
dimensional bar of Mooney material. Physical parameters: density = 1.0 x lo-’ lbf-sec*/inl, 
area = .0314 in*, C, = 24.0 lbf/in*, C, = 1.5 Ibf/in*, length = 1.36 in, initial force = 5.9346 lbf, 
final force = 7.2220 lbf. Model parameters (shock fitting scheme): h = 0.02 in DT = 1.5 x lo+ sec. 

In the calculations to be presented here the implicit shock position method was 
used with the linear trial functions (the DIS 1 set). The same equations as described 
in Section 10 were used in the calculations with one exception. In the standard 
elements an explicit artificial viscosity term of the following form was added to the 
equations for each element. 

4tO.S s, ??&l j uxn -&@ &3.X dX7 p = 1,2. (10.1) 
u=‘LJ* 

This term was added to avoid the consideration of the acceleration waves induced 
in the bar when the applied load shown in Fig. 9 has a discontinuity in slope. Since 
our primary goal here is to model the shock wave, we smeared the acceleration 
wave rather than treated it through some fitting technique for acceleration waves. 
No artificial viscosity was used in the special element at the shock wave. 

In Fig. 10 the variation of the shock strength S is given as a function of time. 
It is compared to the theoretical upper bound of the shock strength which would 
be attained if there was no dissipation of the strength of shock in the shock propa- 
gation process. In Fig. 11 the variation of the intrinsic speed of the shock wave 
is plotted as a function of time. We note here one of the advantages of the finite- 
element/shock fitting scheme. The shock strength and intrinsic wave speed are 
extremely accessible in that they are dependent variables in the finite-element 
model. 
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FIG. 10. Growth of shock strength for the compression shock computed by the shock fitting 
scheme. 
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FIG. 11. Intrinsic velocity of the compression shock wave computed by the shock fitting 
scheme. 
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FIG. 12. A comparison of the shock fitting solution and the parabolic regularization solution 
at t = 3.54 x 10m4sec. 
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FIG. 13a. Growth of a compression shock wave computed by the shock fitting scheme. 
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FIG. 13b. Growth of a compression shock wave computed by the shock fitting scheme. 
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FIG. 13~. Growth of a compression shock wave computed by the shock fitting scheme. 
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To provide some basis for evaluating the qualitative and quantitative behavior 
of the finite-element/shock fitting scheme in application to the above problem, 
the same calculation was performed with a shock smearing scheme (in this case, 
the parabolic regularization scheme of [5] with 01 = 0.8.). In Fig. 12 we compare 
the parabolic regularization and the shock fitting method at time point 
t = 3.54 x 1O-4 sec. In Fig. 13 the shock fitting solution is pictured at various 
time points. The detailed structure of the shock wave is captured by the shock 
fitting scheme. However, the parabolic regularization method distorts the shock 
wave and provides no indication of the true strength of the shock. 

Concerning the inertial approximation and in particular the mass matrices used 
in these calculations, we make the following comments. In the standard elements 
we used a “lumped mass matrix.” In the special elements we used the mass matrix 
developed from inertial approximation (5.4). The mass matrix for the special 
element is thus “distributed.” We do not yet know how to form a “lumped mass” 
matrix for the special element. The construction of such a mass matrix would be 
highly desirable since the use of the consistent mass matrix causes a slight inertial 
coupling across the wave front. The nonzero stress in front of the wave in Fig. 13 
is caused by this inertial coupling. 

Next we consider the reflection of a nonlinear wave from a rigid wall in a one- 
dimensional rod of Mooney material. The physical parameters are presented in 
Fig. 14. In Fig. 15 the shock fitting solution is presented before and after reflection. 
In Fig. 16 the same problem is presented except the calculations are performed with 
a shock smearing method (again the parabolic regularization method [5] with 

F(Lbf.1 5-g346 k 

t(sec.) 

FIO. 14. Physical parameters for the calculation of refiection of a nonlinear wave. Physical 
parameters: density = 1.0 x 10-’ lbf-sec*/S, area = .0314 in*, C, = 24.0 lbf/in*, C, = 1.5 lbf/in*, 
length = 0.62 in. 
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FIG. 15. Reflection of a nonlinear wave by the shock fitting method. 

01 = 0.8). Figures 16a and b correspond to the time points presented in Fig. 15 
for the shock fitting reflected wave is fully developed (650.4 psi); however, the 
parabolic regularization reflected wave is just beginning to develop. In Fig. 16c 
at t = 3.6 x lo--” set the parabolic regularization reflected wave is fully developed 
(625.0 psi). The effect of the shock smearing/parabolic regularization scheme on 
the reflection is to introduce a phase error in the calculations. This error causes 
the reflected wave to reach its peak well after the actual wave. One the other hand, 
the shock fitting model gives a detailed description of the reflection process. 

CONCLUSION 

In this paper the solution of problems of shock propagation in nonlinear 
elastic solids using finite element models with discontinuous trial functions has 
been demonstrated. The ideas and techniques developed here are, however, much 
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FIG. 16. Reflection of a nonlinear wave by the parabolic regularization method (a = 0.8). 

more general. These methods could be applied, for example, to the propagation 
of shocks in fluid media and to the propagation of higher-order waves (with 
discontinuities in higher derivatives of the solution) in solids or fluids. 
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